目錄小學(xué)五年級(jí)的數(shù)學(xué)題,關(guān)于圖形面積問(wèn)題 五年級(jí)上冊(cè)數(shù)學(xué)組合圖形的面積題目有哪些? 五年級(jí)數(shù)學(xué)題:圖形題 列算式,寫(xiě)得數(shù) 求陰影部分的面積 單位:cm 小學(xué)五年級(jí)數(shù)學(xué)圖形題,請(qǐng)寫(xiě)過(guò)程 求五十道五年級(jí)圖形奧數(shù)題有答案和過(guò)程,簡(jiǎn)單點(diǎn),也別太簡(jiǎn)單。
這個(gè)……需要知道空白面老襲積啊……沒(méi)有直接的數(shù)據(jù)可以計(jì)算,友滑不知道是不是用尺量8看侍告兄上去像5*5+6*8-2*2=69的樣子
上圖,把左邊的陰影部分經(jīng)過(guò)旋轉(zhuǎn)、翻轉(zhuǎn),拼接到右上部的陰影部分上,就形成了一凱鏈個(gè)高是半徑的梯形﹙陰影盯和孫部分的總面積﹚。棚源
6-3=3㎝,上底
﹙3+6﹚×3÷2=9×3÷2=13.5㎝2,陰影部分的面積
下圖。把右邊的部分平移與左邊的陰影部分拼接后形成一個(gè)梯形。或把左邊的部分平移與右邊的相拼接,形成一個(gè)梯形。都行,上底是5㎝,下底是8㎝,高是5㎝
﹙5+8﹚×5÷2=13×5÷2=32.5㎝2,陰影部分的面積
如果答案對(duì)你有幫助,請(qǐng)別忘了點(diǎn)擊采納
設(shè)大握兆正方形中空白部孝皮頌分面積是S
S甲 + S=S正=152=225 cm2
S + S乙=S△=(1/2)×(15+10)×15=375/2 cm2
兩個(gè)等式相減,可巧鄭以消去面積S:
S甲 - S乙=225 - 375/2=75/2=37.5 cm2
選B
五年級(jí)組合圖形的面積題目如下。
例題1:一個(gè)三角形苗圃,底長(zhǎng)80m,高35m,在圃中栽種菊花苗,每棵菊花苗占地0.2平方米,這塊花圃共需多少棵菊花苗。
例題2:一個(gè)靠墻圍起來(lái)的梯形籬笆,籬笆共長(zhǎng)40米,它的面積是多少平方米。
例題3:一個(gè)含搭三角形和一個(gè)平行四邊形等底等高,如果平行四邊形的面積是128平方米,那么三角形的面積是多少。
例題4:一個(gè)梯形,上底是3.4厘米,下底是4.8厘米,高是2.7厘米,則這個(gè)梯形的面積是多少。
例題5:一個(gè)平行四邊形的底是2.4分米,高是底的一半,它的面積是多少。
例題6:一個(gè)平行四邊形的面積是9平方分米,并大底擴(kuò)大4倍,高不變,它的面積是多少平方分米。
組合圖形的面積算法:
1、談蔽拿分割法把一個(gè)組合圖形根據(jù)它的特征和已知條件分割成幾個(gè)簡(jiǎn)單的規(guī)則圖形,分別算出各個(gè)圖形的面積,最后求出它們的面積的和。
2、旋轉(zhuǎn)法把原圖形進(jìn)行一次或多次旋轉(zhuǎn),使它變成我們所熟悉的新圖形,然后再進(jìn)行計(jì)算。
《組合圖形的面積》是北師大版小學(xué)五年級(jí)數(shù)學(xué)上冊(cè)第五單元的內(nèi)容。學(xué)習(xí)組合圖形的面積是在長(zhǎng)方形、正方形、平行四邊形、三角形和梯形這五個(gè)基本圖形的面積公式學(xué)習(xí)之后,進(jìn)行的一種由形象到抽象的學(xué)習(xí)。解題的基本方法是將組合圖形轉(zhuǎn)化成基本圖形,然后再進(jìn)行計(jì)算。
甲面積-乙面積=大正方燃胡形面積-大正方形局消中白色面積-乙面積
=大正方形桐段知面積-(大正方形中白色面積+乙面積)
=大正方形面積-(左白右乙大三角形面積)
=大正方形面積-15*25/2
=15*15-15*25/2
=15*2.5
=37.5